Network FundamentalsBasic SNA

Danielle Varda, PhD University of Colorado Denver School of Public Affairs

Outline for Today’s Training

- What is Social Network Analysis?
- Conceptual Foundations: Meaning in Nodes and Lines
- Types of SNA
- Data Collection and Management in SNA projects
- Data Entry Example Using UCINET
- Resources
- Practice Example

What is
 Social Network Analysis?

Social Network Analysis

Social Network Analysis (SNA) is a tool used to gather and analyze data to explain the degree to which network actors connect to one another and the structural makeup of collaborative relationships (Scott, 1991).

What is a Network?

- A set of nodes (or actors) along with a set of ties of specified type that link them.

OUTCOME

OUTCOME

Elements of a Network

- Collects data on who is connected to whom
- How those connections vary and change
- Focus on patterns of relations

We Dream in Graphs...

And Analyze in Matrices.
 $\begin{array}{llllll}\text { A } & \text { B } & \text { C } & \text { D } & \text { E } & F\end{array}$

Figure 4.3. Matrix representation (P) of Figure 4.I.

I	0	I	O	\bigcirc	0
2	I	\bigcirc	I	I	I
3	\bigcirc	I	\bigcirc	2	I
4	\bigcirc	I	2	\bigcirc	I
5	\bigcirc	I	I	I	\bigcirc

Figure 4.4. Matrix representation (G) of Figure 4.2.

Network Data = Matrix Data

- Matrices are tables
- Sort numbers
- Rows and Columns (2-way matrix)
- 1 mode
- 2 mode
- Matrix Algebra: Matrices can be added, multiplied, etc.
- But must have equal rows/columns

Data Entered Into Adjacency Matrices

$\begin{array}{llllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ $R R R R R R R R R R R R R R R A A A A A A A A A A A A A$

Network Data: Two Ways

Relational Data				
	Scot	Sam	Amy	Kate
Scot	-	1	2	0
Sam	1	-	2	0
Amy	2	2	-	1
Kate	0	0	1	-

Attribute Data

	Gender	Member	Tenure
Scot	1	1	1
Sam	1	0	5
Amy	2	0	1
Kate	2	1	3

Network Data: Two Ways

Relational Data					
	Scot	Sam	Amy	Kate	
Scot	-	1	2	0	
Sam	1	-	2	0	
Amy	2	2	-	1	
Kate	0	0	1	-	

Types of SNA

Whole vs. Ego Networks

- Whole Network
- A complete set of bounded actors
- Example: All members in a tobacco coalition, all public health departments in the country, all clients in a health delivery network
- Ego/Personal Network
- Randomly sample people from a population
- Ask only about their alters (no roster)
- Ask a sample of patients about who the members of their personal support network are

Unit of Analysis: Whole/Sociocentric Level

Unit of Analysis: Subgroup Level

Subgroups are a subset of the graph based on certain nodes or links

Unit of Analysis: Dyads/Triads

Unit of Analysis: Individual Nodes (Ego-Centric)

Ego Centric Analysis

- Combines the network perspective with mainstream social science
- Random Sample of "Nodes"
- Each Person is asked to list their "alters"
- Then they are usually asked about attributes of the alters
- Then the relationships between the alters are identified.

*2012 LINKS Center Summer SNA Workshop: Analyzing Track

Example Ego-Centric Survey Questions

No.	Name	Relationship with householder	Existence, nont- existence of residence	Date of baith (specify Lunar or Solar)	Age Animal symbol of year	Full age	Sex	Marital status
01								
02								
03								
04								
05								
06								
07								
08								
09								
10								
11								
12								
13								
14								
15								

Ego Centric Analysis: Social Isolation in America

- (McPherson, Smith-Lovin, \& Brashears, 2006) found that Americans indicated fewer numbers of relationships to people that they discuss important matters with than they did on average nine years prior.
- Data Collection: In the 2004 General Social Survey study:
- From time to time, most people discuss important matters with other people. Looking back over the last six months-who are the people with whom you discussed matters important to you? Just tell me their first names or initials.

Ego Centric Analysis: Social Isolation in America

- Results:
- mean network size of a respondent was 2.08 , while in 1985, this average was 2.94.
- More alarming is that the modal respondent in 2004 now reports having no confidants while in 1985 the modal respondent indicated three confidants.
- Discussion:
- while American's core social network, made up of strongly connected relationships may be shrinking, their actual social networks are probably growing, albeit with weaker (possibly more diverse) relationships due to technological advances.
- Or survey error!

Table of Results from Ego-Centric Analysis

358 AMERICAN SOCIOLOGICAL REVIEW

Table 1. Size of Discussion Networks, 1985 and 2004 ${ }^{\text {b }}$

Network Size	Total Discussion Network		Kin Network ${ }^{\text {a }}$		Non-Kin Network ${ }^{\text {a }}$	
	1985	2004	1985	2004	1985	2004
0	10.0\%	24.6\%	29.5\%	39.6\%	36.1\%	53.4\%
1	15.0\%	19.0\%	29.1\%	29.7\%	22.4\%	21.6\%
2	16.2\%	19.2\%	21.0\%	16.0\%	18.1\%	14.4\%
3	20.3\%	16.9\%	11.7\%	9.4\%	13.2\%	6.0\%
4	14.8\%	8.8\%	5.8\%	4.0\%	6.8\%	3.1\%
5	18.2\%	6.5\%	2.8\%	1.3\%	3.4\%	1.4\%
$6+$	5.4\%	4.9\%	-	-	-	-
Mean	2.94	2.08	1.44	1.12	1.42	. 88
Mode	3.00	. 00	. 00	. 00	. 00	. 00
SD	1.95	2.05	1.41	1.38	1.57	1.40

Note: $\mathrm{N}(1985)=1,531 ; \mathrm{N}(2004)=1,467$.
${ }^{\text {a }}$ Information on kinship was collected on the first five alters cited. Therefore, the sum of kin and non-kin alters is not equal to the overall network size distribution.
${ }^{\text {b }}$ In all tables for this paper, cases are weighted to reflect the population. Weight variable for 1985 is a function of

Table of Results from Ego-Centric Analysis

(2) Social Lolation.pft -Adobe Reader					
-	Table 2. Respondents Who Had Various Relationships with at Least One Confidant				
	Type of Relationship to Respondent ${ }^{\text {a }}$	1985, \% ($\mathrm{N}=1,531$)	2004, \% ($\mathrm{N}=1,467$)		
	No Confidant	10.0	24.6**		
	Spouse	30.2	38.1**		
	Parent	23.0	21.1**		
	Sibling	21.1	14.1**		
	Child	17.9	10.2**		
	Other Family Member	18.2	11.8**		
	Coworker	29.4	18.0**		
	Comember of group	26.1	11.8**		
	Neighbor	18.5	7.9**		
	Friend	73.2	50.6**		
	Advisor	25.2	19.2**		
	Other	4.5	3.1**		
	Spouse is only Confidant	5.0	9.2**		
	At Least One Non-spouse Kin	58.8	42.9**		
	At Least One Non-kin Confidant	80.1	57.2**		
	Note: The table displays, for example, "What percent of the sample mentioned a spouse/parent/etc. as a person with whom they discussed important matters?" ${ }^{\text {a }}$ Since more than one type of relationship can be mentioned for any given discussion partner (e.g., a coworker can also be a co-member of a group, an advisor and a friend), the percentages do not sum to 100 . ** $p<.01$ (two-tailed tests).				

Table 3. Structural Characteristics of Core Discussion Networks

	$1985\left(\mathrm{~N}=1,167^{2}\right)$	$2004\left(\mathrm{~N}=788^{\mathrm{b}}\right)$
Network Density		
<25	9.9\%	7.3\%
.25-. 49	18.5\%	11.8\%
. $50-.74$	37.9\%	39.5\%
$\geq .74$	33.7\%	41.4\%
Mean	. 60	. 66
SD	.33	. 33
Mean Frequency of Contact (days per year)		
6-12	3.7\%	3.0\%
$>12-52$	15.3\%	10.6\%
>52-365	81.0\%	86.4\%
Mean	208.92	243.81
SD	117.08	114.86
Length of Association (in years)		
$>0-4.5$	12.1\%	10.7\%
>4.5-8+	87.9\%	89.3\%
Mean	6.72	7.01
SD	1.34	1.00
Age Heterogeneity (standard deviation of age of alters)		
<5	25.8\%	29.1\%
5-<10	24.6\%	19.7\%
$10-<15$	24.3\%	23.9\%
>15	25.3\%	27.3\%
Mean	10.35	10.34
SD	6.96	8.1
Population Age Heterogeneity	20.89	18.37
Education Heterogeneity (standard deviation of alters' educations)		
0-1	31.9\%	34.7\%
$>1-2.5$	41.0\%	45.2\%
>2.5	27.0\%	20.1\%
Mean	1.77	1.48
SD	1.52	1.38
Population Educ Heterogeneity	3.59	3.17
Race Heterogeneity (Index of Qualitative Variation) ${ }^{\text {F }}$		
0	91.1\%	84.5\%
>0	8.9\%	15.4\%
Mean	. 05	. 09
SD	. 18	. 26
Population IQV	34	. 53
Sex Heterogeneity (Index of Qualitative Variation)		
0	23.8\%	24.2\%
.01-.90	39.9\%	37.6\%
$>.90$	36.3\%	38.1\%
Mean	. 67	. 68
SD	. 43	. 46
Population IQV	.99	1.00

${ }^{2}$ Density and heterogeneity measures are meaningful only for respondents who mentioned more than one alter. The actual Ns for different analyses vary somewhat because of missing data, ranging from 1167 for race and sex to 1132 for education.

Note: Data show unstandardized OLS regression coefficients of network variables on respondents' demographic characteristics. All coefficients significant at $p<.01$, unless indicated as not significant (NS). Marsden (1987) also analyzed differences in network size and kin composition by size of place, but this variable has not yet been coded for 2004 so comparable analyses are not possible at this time. (The size of place variable is added to the data set after the data are collected, using the respondents' addresses and current Census tract information.)

Whole Network Analysis: Describing Networks

Measures to Describe Networks

- Size
- Inclusiveness (all minus isolates)
- Component (largest connected subset)
- Connectivity - reachability
- Density
- Centralization
- Symmetry
- Transitivity

Transitivity

- How information flows based on transitive triples
- How many transitive triples exist?
- Matrix with greatest number of transitive triples has higher TRANISTIVITY.
- Units with higher transitivity

"FRIEND OF A FRIEND" have better information flow.

Density

Centralization

- Extent to which a network revolves around a single node
- Most networks start out centralized, become decentralized over time

Structural Equivalence

- Structural Equivalence measured by Correlation Coefficient

Sociomatrix

- All ties from one actor are equivalent to the other

- If they are structurally equivalent, then they are substitutable

Measures to Describe Ties

- Indirect Links
- Frequency
- Multiplexity
- Strength
- Direction
- Symmetry (Reciprocity)

Measures to Describe Individual Actors

- Degree
- In-Degree
- Out-Degree
- Centrality

The 9-11Terrorist Network

The 9-1 1 Terrorist Network

The Terrorist Network

Degree		Betweene ss		Closenes s	
0.361	Mohamed Atta	0.588	Mohamed Atta	0.587	Mohamed Atta
0.295	Marwan Al- Shehhi	0.252	Essid Sami Ben Khemais	0.466	Marwan Al-Shehhi
0.213	Hani Hanjour	0.232	Zacarias Moussaoui	0.445	Hani Hanjour
0.180	Essid Sami Ben Khemais	0.154	Nawaf Alhazmi	0.442	Nawaf Alhazmi

Inferential Network Analysis

Can We Use Networks to Explain Behaviors?

- H1. Individuals who report communicating with one another are also perceived by others in the network to communicate with one another.
- H2. Individuals who are in similar positions within the emergent communication network are also perceived by others in the network to communicate with one another.

QAP: Quadratic Assignment

 Procedure- Pearson's correlation coefficient between corresponding cells of the two data matrices.
- Columns and rows are randomly permuted and the correlations are recomputed.
- This happens hundreds (or thousands, 5000 in this example) of times in order to compute the proportion of instances when a random measure will be larger than or equal to the observed measure.
- A low proportion (<0.05) suggests a strong relationship between the matrices that is untiolv to have occurred by chance.

ERGM's (Exponential Random Graph Models)

- A way to identify whether a "structural signature" is likely to occur in your network.
- Methods uses modeling of random networks to look for the probability of a "signature" occurring.
" "Signatures" are algorithms established by methodologists in the field (around 17 validated at this time).
- Most often done in R.

How Can You Do SNA? Data Collection and Management in SNA projects

Steps to SNA Study

1. Identify the population

- Bounding the network, gaining access

2. Determine the data sources

- Archival, interviews, observations, surveys

3. Collect the data

- Survey design

Step 1: Identify the Population

- Probably the most difficult part of preparing a network analysis
- Is the question: What is the network?
- What are the network boundaries?
- Natural boundary?
- Attribute based?
- Relational based?
- Formally based?
- Gaining Access
- It helps to have help from a network member
- Presenting to the group ahead of time increases response rate

Step 2: Determine Data Sources

- Archival Data
- Covert Networks
- Citation Networks
- Meeting Minutes
- Surveys
- Online
- Paper
- Interviews
- Observations
- Data Mining

Sampling

- Can you use a sampling method to study complete networks? In general, the answer is no.
- Exception: Egocentric
- However, certain kinds of hypotheses can be tested with sample data. For example, it is possible to estimate the density of a network by looking at ties among a sample of nodes.

Step 3: Collect the Data

- What questions will you ask?
- It depends?
- How will you format your survey?
- Paper vs. Online
- Open-Ended vs. Closed List
- Ethnography helps

Data Collection

- Relation-based: starts with a relation of interest, such as emotional support, and then asks all the people that the respondent has this particular relationship with.
- "Which of your fellow employees do you obtain emotion support from?"
- Affiliation-Based: asks people to identify others that they know through a specific affiliation.
- "Which of the following people do you go to church with."
- "Which of the following people do you work with?"

Data Collection

- Name Generator.
- unlimited in scope: the respondent may name anyone from any sphere of life: neighbors, kin, friends, coworkers, etc.
- After obtaining a large list of names, the interviewer typically goes over each name, asking the respondent about the nature of their relationship with that person (what social relation) and asking about attributes of that person (sex, race, income, etc.).
- Bounded List
- Pre-defined list
- Entire network must be identified before data collection starts
- Sometimes boundaries are clear (e.g. classrooms, organizational departments)
- Sometimes not clear; might need to implement name generator approach first

Whole Network Data Collection Methods

- Questionnaires.
- Row-based: each questionnaire forms one row in the adjacency matrix of the group as a whole.
- Use the whole matrix analytically
- Each row obtained from a different source
- Each could have its own measurement idiosyncracies
- Wording Issues
- "Friendship" does not mean the same thing to everyone
- Provide clear definitions of relationship meaning

Example Survey Questions: Name Generator

Please list up to 10 people you go to for advice regarding important health care decisions?
Please write in the first and last name of each person.

Name1	Name2	Name3	Name4	Name5	Name6	Name7	Name8	Name9	Name10

Example Survey Questions: Bounded List

Which of the following organizations do you refer clients to?
Please place an " X " in the box for organizations that can you refer clients to.

Org 1	Org2	ORG3	ORG4	ORG5	ORG6	ORG7	ORG8	ORG9	ORG10

Example Survey Questions

Please answer the following question for each partner you selected in Question 10:

11. How frequently does your organization work with this organization/program/department on issues related to the goals of the NH Regional Network?

	Never/We only interact on issues unrelated to the collaborative	Once a year or less	About once a quarter	About once a month	Every Week	Every Day
Capital Area Regional Network	\bigcirc	\bigcirc	\bigcirc	©	\bigcirc	\bigcirc
Center for Excellence	\bigcirc	\bigcirc	\bigcirc	\bigcirc	()	\bigcirc
Greater Manchester Regional Network	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Greater Nashua Regional Network	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Greater Rockingham County Regional Network	\bigcirc	\bigcirc	\bigcirc	©	\bigcirc	\bigcirc
Lakes Region-Mount Washington Valley Regional Network	\bigcirc	\bigcirc	\bigcirc	©	\bigcirc	\bigcirc
Monadnock Regional Network	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
National Guard	\bigcirc	\bigcirc	\bigcirc	()	\bigcirc	\bigcirc
monn .r.	\sim	\sim	\sim	\sim	-	-

Example Survey Questions

We are interested in determining whether various leaders from CITY know each other. Below you will find a list of names of coalition members with whom you may have come into contact during the last six months. Please check the box which best represents how often you communicated with each person in the last six months (e.g. in writing, over the phone, face-to-face, or in meetings). If you don't know the person, check the box marked "Don't Know Person."

	$\frac{\text { Don't Know }}{\text { Person }}$	$\frac{\text { Not at }}{\text { All }}$	$\begin{aligned} & \text { Less than } \\ & \text { Monthly } \end{aligned}$	Monthly	Weekly	Daily
1.	1 ~	2^{\sim}	$3 \sim$	4~	s~	6^{\sim}
2.	$1 \sim$	2^{\sim}	3^{\sim}	4~	$5 \sim$	6^{\sim}
3.	1 ~	2^{\sim}	3~	4~	5~	6^{\sim}
4.	1 ~	2^{\sim}	$3 \sim$	4~	5~	6^{\sim}
5.	$1 \sim$	2^{\sim}	$3 \sim$	$4 \sim$	5^{\sim}	6^{\sim}
6.	$1 \sim$	2^{\sim}	$3 \sim$	$4 \sim$	$5 \sim$	6^{\sim}

If you feel there is anyone that should be included in the above list, add his/her name in the space/s below

16.	1^{\sim}	2^{\sim}	3^{\sim}	4^{\sim}	5^{\sim}	6^{\sim}
17.	1^{\sim}	2^{\sim}	3^{\sim}	4^{\sim}	5^{\sim}	6^{\sim}
18.	1^{\sim}	2^{\sim}	3^{\sim}	4^{\sim}	5^{\sim}	6^{\sim}
19.	$1^{\sim} \sim$	2^{\sim}	3^{\sim}	4^{\sim}	5^{\sim}	6^{\sim}
20.	1^{\sim}	2^{\sim}	3^{\sim}	4^{\sim}	5^{\sim}	6^{\sim}

Example Survey Questions

WHO: Name of other organization or 'group partnership'? Get specifics, e.g., dept or unit, location, contact name(s). Also note name of the partnership itself (if it has one).	TIMING: How long has the partnership been going? Is it ongoing vs. past work? If ended, when and why?	CONTENT: What kinds of activities does the Partnership entail? Mark all that apply from response to question. Do not read each category below, but may use them to prompt respondent if having difficulty answering.	ROLES: Is there a lead agency or set of agencies in the partnership?	RESOURCES: Is there any dedicated funding for the Partnership, either within the partner organizations or from sources outside the Partnership? Focus on type of support (and sources for outside support), but not on amount of funding.	OUTCOME: How successful has it been and why? (specific to the individual partnership listed below)
\# __	a Years \qquad b Months \qquad 1 Ongoing 2 Ceased When \& Why?		1 No 2 Yes: \qquad 工	1 Monetary -either org 2 In-kind support only (default) 3 Monetary-outside source Source(s): \qquad \qquad	1 Successful 2 Somewhat successful 3 Not successful 4 Too early to tell
Notes:					

Issues with SNA Data

- Response Bias
- Asymmetry
- Missing Data
- Accuracy
- Ethics

Data Collection Limitations

- Informant accuracy
- Can people really tell you about their social networks? Marketing researchers have found that consumers can barely tell you what they had for lunch yesterday. Bernard, Killworth and Sailer investigated informant accuracy systematically and found that about 52% of what they said was wrong.
- Based on the work of Freeman, Freeman and Romney, as well D'Andrade, DeSoto, and many others, it appears that people's recall of their interactions with others is systematically biased toward what is normal and/or logical.

Data Collection Limitations

- People also tend to remember interactions with people who are important, while forgetting interactions with people that are not.
- Some respondents will lie to make themselves look good, since people judge others on who they associate with.
- As with any questionnaire, there are also problems with how people interpret the questions. What "friend" means to one person may be very different from what "friend" means to others.

Data Collection Limitations

- Can we "solve" this problem?
- Krackhardt's solution to all this is to get everyone's opinion of everyone's relationship with everyone. So that if a person claims to be friends with everyone, but everyone else agrees that they are friends with no one, we have a clue that they might be lying or misunderstanding the question.

Ethical Issues

- Respondents cannot be anonymous
- Non-respondents are still included
- Missing data can be powerful
- Data could be mis-interpreted

When to pick which method?

- Depends on what question you want to answer.
- And what is available for data collection.
- Ego-Centric Questions
- How do patients characterize their personal networks?
- Do people with more intense friendships have better health outcomes?
- Whole network questions
- How centralized is the network?
- How active is the network?
- What is exchanged in this network?

Resources

SNA Professional Organization (Sunbelt Conference)

wwww.INSNA.org

INTERNATIONAL NETWORK FOR SOCIAL NETWORK ANALYSIS

Register or Login and access great features available to members only!

Already a member? Click Here to transfer your account from the old website

Featured Members	
Featured Bibliographic References	
Opsahl, T. \& Hogan, B. (2010). Growth mechanisms in continuously-observed networks: Communication in a Facebook-like community. arXiv:1010.2141.	
Seierstad, C. \& Opsahl, T. (2011). For the few not the many? The effects of affirmative action on presence, prominence, and social capital of female directors in Norway. Scandinavian Journal of Management, 27 (1).	

INSNA proudly announces the election of two of our members, H. Russell (Russ) Bernard and Larissa A. Lomnitz to The National Academy of Sciences,

Click Here for more information.

March 24, 2011	Website Update to fix Bibliography Search	0 comments
March 10, 2011	Sunbelt XXXI 2011 Video Files Posted	0 comments
February 21, 2011	Sunbelt XXXI Conference Abstract PDF Updated	0 comments
February 01, 2011	Sunbelt XXXI Conference Updated Program Posted	0 comments
January 25, 2011	Sunbelt XXXI Workshop Registration Deadline Extension	0 comments

Sunbelt XXXI

St. Pete Beach, FL, USA
TradeWinds Resort
Click Here for More Information Febuary 08 - Febuary 13, 2011 - Trade Winds Beach

CONNECTIONS

Volume 30 Issue 2-2010
Cover
Structural Redundancy and Multiplicity in Corporate Networks

Barnes, Roy
Burkett, Tracy
This research presents an intuitive and straight forward method of capturing both structural redundancy and the multiplicity of social ties in small network of 20 corporate directors across four dif... A Configurational Approach to Homophily Using Lattice Visualization

Schaefer, David, R
This research approaches homophily as a multidimensional concept and uses combinatoria logic to investigate the patterns of homophily that exist in relations from different substructures
\qquad
What You Believe Travels Differently: Information and Infection Dynamics Across Sub-Networks

Comprehensive List of Courses

- http://socialnetworkcourses.wordpress.com/ 2010/11/11/list-of-snsna-courses/

Home About Christopher (Rusty) Tunnard

List of SN/SNA Courses

Here's a link to a spreadsheet list of undergraduate and graduate courses on social networks and social network analysis that I compiled in the fall of 2010. I don't intend to update it, but hopefully someone from the INSNA (International Network of Social Network Analysts) will post it on their website and allow people to add and amend courses.

The short answer: 91 courses (that I could find) and growing.
Social Network Courses as of October 2010

Ads by Google

Email Marketing Webinar

Increase Lead Generation with Email Free Webinar, Sign-up Now.
www.HubSpot.com

TAG CLOUD
blogs
conferences Courses debates Dunbar Email
Facebook HHL jourrals learning outcomes Media Online Social

Office of Behavioral and Social Sciences Research

, http://obssr.od.nih.gov/scientific_areas/met hodology/systems_science/index.aspx

珰 PRINTER FRIENDLY TEXT SIZE: A|A|A< ShareThis Subscribe to RSS

METHODOLOGY

Community Based
Participatory Research
Systems Science

NEWS

National Collaborative on Childhood Obesity Research (NCCOR) Catalog of Surveillance Systems

"Doctor in the Pocket" Aims to Increase Exercise in Overweight Youth

The 'contaqion' of social networks

NIH Seeks to Break New Ground in Reducing Health Disparities

Home $>$ Scientific Areas $>$ Methodology $>$ Systems Science
Systems Science

- Backaround
- Funding Opportunity Announcements in Svstems Science
- Svstems Science Videocasts and Slide Presentations
- Svstems Science and Health Resources
- Institute on Svstems Science and Health (ISSH)
- Behavioral and Social Sciences (BSSR)-Svstems Science Listserve

Background

There is a growing recognition that most major threats to the public's health - including cardiovascular disease, pulmonary disease, cancer, diabetes, mental health problems. HIV, substance abuse, violence, emerging infectious diseases, obesity, sedentary lifestyle, poor diet, sleep disorders, and more-are complex in the sense that each one arises from an intricate mix of behavioral, economic and social factors interacting with biological factors, as well as each other, over the lifespan and across an array of settings (e.g., home, school, workplace, neighborhood, etc.). For example, tobacco use and successful cessation are influenced by a host of interrelated factors, including: the tobacco product itself (e.g., percent free-base nicotine content,

List of Recommended Readings

- http://obssr.od.nih.gov/pdf/valente_recomen _readings.pdf

Recommended Reading on Network Analysis - Valente
Barabási, A-L. (2002). Linked: The new science of networks. Cambridge MA: Perseus
Bearman PS, Jones J,\& Udry JR. The National Longitudinal Study of Adolescent Health: Research
Design Available from: URL: http://www.cpcp.unc.edu/projects/addhealth/design.html.
Borgatti, S.P., Everett, M.G. and Freeman, L.C. (2005). Ucinet for Windows: Software for Social Network Analysis. Harvard, MA: Analytic Technologies.

Brandes, U., \& Erlebach, T. (2005). Network analysis: Methodological foundations. Berlin, Germany:
Springer.
Burt, R. S. (2002). Structural holes: The social structure of competition. Cambridge MA: Harvard University Press.

Carrington, P. J., Scott, J. \& Wasserman, S. (Eds.) (2005). Models and Methods in Social Network Analysis.
Cambridge, UK: Cambridge University Press.
Casterline, J. (2001). (Ed.) Diffusion processes and fertility transition: Selected perspectives.
Washington DC: National Academy Press.
Coleman, J. S., Katz, E., \& Menzel, H. (1966). Medical Innovation: A Diffusion Study. New York: Bobbs Merrill.

Cross, R., \& Parker, A. (2003). The hidden power of social networks: Understanding how work really gets done in organizations. Cambridge MA: Harvard Business School Press.

UCINET

- http://www.analytictech.com/ucinet/

Home | Versions | Purchase now | Documentation | Analytic Technologies | Support

Overview
Downloading
Purchasing
Updating
Learning
Contact

Welcome to the UCINET website

UCINET is a social network analysis program developed by Steve Borgatti, Martin Everett and Lin Freeman. The program is distributed by Analytic Technologies. UCINET works in tandem with freeware program called NETDRAW for visualizing networks. NETDRAW is installed automatically with UCINET.

A free trial version is available (very useful for giving workshops!). The trial version is identical to the regular version -- except that it has an expiration data. We also offer deep discounts for students and site licenses (click on pricing for more information). The program may be purchased online.

For documentation, tech support, and so on, visit the learning page.
Click on overview to learn more.

Online SNA Text (UCINET)

- http://www.faculty.ucr.edu/~hanneman/net text/

Robert A. Hanneman and Mark Riddle

Introduction to social network methods
Table of contents

About this book

This on-line textbook introduces many of the basics of formal approaches to the analysis of social networks. The text relies heavily on the work of Freeman, Borgatti, and Evel authors of the UCINET software package). The materials here, and their organization, were also very strongly influenced by the text of Wasserman and Faust, and by a gradua seminar conducted by Professor Phillip Bonacich at UCLA. Many other users have also made very helpful comments and suggestions based on the first version. Errors and omissions, of course, are the responsibility of the authors.

You are invited to use and redistribute this text freely -- but please acknowledge the source.
Hanneman, Robert A. and Mark Riddle. 2005. Introduction to social network methods. Riverside, CA: University of California, Riverside (published in digital form at http://faculty.ucr.edu/~hanneman/)

Table of contents:

Preface

1. Social network data
2. Why formal methods?
3. Using graphs to represent social relations
4. Working with Netdraw to visualize graphs
5. Using matrices to represent social relations
6. Working with network data

Connection
Embeddina

PARTNER

(Program to Analyze, Record, and Track Networks to Enhance Relationships) - www.partnertool.net

PARTNER

Program to Analyze, Record, and Track Networks to Enhance Relationships

HOME ABOUT RESOURCES SUPPORT ANALYSIS TOOL SURVEY CONTACT

PARTNER is a social network analysis tool designed to measure and monitor collaboration among people/organizations over time. The tool is designed for use by members of a collaborative (that is, three or more partners) to demonstrate how members are connected, how resources are leveraged and exchanged, the levels of trust, and to link outcomes to the process of collaboration. The tool includes an online survey that you can administer to collect data and an analysis program that analyzes these data,

PARTNER is a free tool and demonstrations of how to use it are provided to help you get started. Various levels of consulting are available to help you collect and analyze data, report your findings, and strategize action steps for improvement.

To get started, register as a "Manager" here.

Projects

Web Demos:
 Using PARTNER

1. Evaluate how well your collaborative is working in terms of identifying the "right" partners, leveraging resources, and strategizing for how to improve the work of the collaborative

Upcoming Demos

2. Demonstrate to partners, stakeholders, evaluators, and funders how your collaborative is progressing over time and why working together is making tangible change.
3. Engage in strategic collaborative management to develop action steps and implement change to reap the benefits of social networking.

Meet Danielle Varda

$$
{ }^{4}+4
$$

Questions?

